

Overview
A successful security scan was executed against your Salesforce environment. This document lists the vulnerabilities identified by the

SaaS$S Security Scanner for Salesforce. It is recommended to fix all high risk vulnerabilities detailed in this report. Medium and low risk

issues should be fixed as a best practice.

Process

S4 — Saa$S Security Scanner for Salesforce utilizes static, dynamic, along with configuration testing in order to rapidly identify

vulnerabilities in a Salesforce environment. The following figure shows the key components of the scanning process.

Findings Overview

Following is a visualization of vulnerabilities identified by S4.

Vulnerability Types

I CRUD (28) I Vulnerable Software_angularjs (6)
I Vulnerable Software_bootstrap (20)

I \/uinerable Software_jquery (183) [l CSRF (1)
Vulnerable Software_moment.js (2) [l SHARING (2)
I Vulnerable Software_jquery-ui-dialog (30)

I Vulnerable Software_ckeditor (12)

7~

Vulnerability Severity Overview

I Critical (0) I High (56) NI Medium (189) [Low (39)
I nfo (0)

HIGH

% ACTIVE | Wed Jan 06 2021 21:32:46 GMT-0800 (Pacific Standard Time) | & Authorization Bypass

Background

Authorization, or access control, is a way of mediating access to resources and application functionality based on the identity of
a user. Anytime a user can gain access to a resource that is denied to their role, they have performed authorization bypass.
There are countless ways authentication bypass can occur. In this case, the user is able to execute a Read, Update, or Delete
(CRUD) function in Apex code without their permission being validated correctly. Authorization Bypass occurs when user
permissions are not validated prior to executing a Create, Read, Update, or Delete (CRUD) function in Apex code.

Issue (Code Snippet, Exploit)

Remediation Guidelines

O User permissions should always be validated before a CRUD function is executed in Apex code. This way, if the user does
not have the correct permissions for what they are trying to do, they will now be allowed to proceed.

O Implement access control checks such as isAccessible() prior to Select. isAccessible() checks to see if the user who is trying
to select something has permissions to access that information.

O Implement access control checks such as isCreateable() prior to insert. isCreateable() checks to see if the user who is trying
to insert something is allowed to insert that type of information/object.

O Implement access control checks such as isUpdateable() prior to update. isUpdateable() checks to see if the user who is
trying to update something is allowed to do so.

O Implement access control checks such as isDeleteable() prior to delete. isDeleteable() checks to see if the user who is trying
to delete something is allowed to do so.

O Code Snippet: if(Schema.sObjectType.Case.isCreateable()) {insert SecurityScanCase;}

Vulnerability Trace

UserClass MyProfilePageController (classes/MyProfilePageController.cls > Line: 5 Col: 27)
public with sharing class MyProfilePageController

Method MyProfilePageController (classes/MyProfilePageController.cls > Line: 14 Col: 12))
void MyProfilePageController()

Assignment user (classes/MyProfilePageController.cls > Line: 15 Col: 9)
user=[SELECT id, email, username, usertype, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname,
phone, title, street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserInfo.getUserld()]

Soql [SELECT id, email, username, usertype, communitynickname, timezonesidkey, languagelocalekey, firstname, lastname,
phone, title, street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE
id = :UserlInfo.getUserld()] (classes/MyProfilePageController.cls > Line: 15 Col: 16)

user=[SELECT id, email, username, usertype, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname,
phone, title, street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserInfo.getUserld()]

HIGH

% ACTIVE | Wed Jan 06 2021 21:32:46 GMT-0800 (Pacific Standard Time) | & Authorization Bypass

Background

Authorization, or access control, is a way of mediating access to resources and application functionality based on the identity of
a user. Anytime a user can gain access to a resource that is denied to their role, they have performed authorization bypass.
There are countless ways authentication bypass can occur. In this case, the user is able to execute a Read, Update, or Delete
(CRUD) function in Apex code without their permission being validated correctly. Authorization Bypass occurs when user
permissions are not validated prior to executing a Create, Read, Update, or Delete (CRUD) function in Apex code.

Issue (Code Snippet, Exploit)

Remediation Guidelines

O User permissions should always be validated before a CRUD function is executed in Apex code. This way, if the user does
not have the correct permissions for what they are trying to do, they will now be allowed to proceed.

O Implement access control checks such as isAccessible() prior to Select. isAccessible() checks to see if the user who is trying
to select something has permissions to access that information.

O Implement access control checks such as isCreateable() prior to insert. isCreateable() checks to see if the user who is trying
to insert something is allowed to insert that type of information/object.

O Implement access control checks such as isUpdateable() prior to update. isUpdateable() checks to see if the user who is
trying to update something is allowed to do so.

O Implement access control checks such as isDeleteable() prior to delete. isDeleteable() checks to see if the user who is trying
to delete something is allowed to do so.

O Code Snippet: if(Schema.sObjectType.Case.isCreateable()) {insert SecurityScanCase;}

Vulnerability Trace

UserClass MyProfilePageControllerTest (classes/MyProfilePageControllerTest.cls > Line: 5 Col: 35)

public with sharing class MyProfilePageControllerTest

Method testSave (classes/MyProfilePageControllerTest.cls * Line: 7 Col: 42))
void testSave()

If-Else Block condition taken (classes/MyProfilePageControllerTest.cls > Line: 11 Col: 9)

existingPortalUsers.isEmpty()

MethodCall cancel (classes/MyProfilePageControllerTest.cls > Line: 42 Col: 28)

controller.cancel()

Method cancel (classes/MyProfilePageController.cls * Line: 46 Col: 17)

void cancel()

Assignment user (classes/MyProfilePageController.cls > Line: 48 Col: 9)
user=[SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserlInfo.getUserld()]

Soql [SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firstname, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =
:Userlnfo.getUserld()] (classes/MyProfilePageController.cls * Line: 48 Col: 16)

user=[SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserlInfo.getUserld()]

UserClass MyProfilePageControllerTest (classes/MyProfilePageControllerTest.cls > Line: 5 Col: 35)

public with sharing class MyProfilePageControllerTest

Method testSave (classes/MyProfilePageControllerTest.cls * Line: 7 Col: 42)
void testSave()

If-Else Block condition taken (classes/MyProfilePageControllerTest.cls > Line: 11 Col: 9)

existingPortalUsers.isEmpty()

MethodCall cancel (classes/MyProfilePageControllerTest.cls * Line: 19 Col: 24)

controller.cancel()

Method cancel (classes/MyProfilePageController.cls * Line: 46 Col: 17)
void cancel()

Assignment user (classes/MyProfilePageController.cls > Line: 48 Col: 9)
user=[SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserlInfo.getUserld()]

Soql [SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firstname, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =
:Userlnfo.getUserld()] (classes/MyProfilePageController.cls - Line: 48 Col: 16)

user=[SELECT id, email, username, communitynickname, timezonesidkey, languagelocalekey, firsthame, lastname, phone, title,
street, city, country, postalcode, state, localesidkey, mobilephone, extension, fax, contact.email FROM User WHERE id =

:UserlInfo.getUserld()]

HIGH

% ACTIVE | Wed Jan 06 2021 21:32:46 GMT-0800 (Pacific Standard Time) | & Authorization Bypass

Background

Authorization, or access control, is a way of mediating access to resources and application functionality based on the identity of
a user. Anytime a user can gain access to a resource that is denied to their role, they have performed authorization bypass.
There are countless ways authentication bypass can occur. In this case, the user is able to execute a Read, Update, or Delete
(CRUD) function in Apex code without their permission being validated correctly. Authorization Bypass occurs when user
permissions are not validated prior to executing a Create, Read, Update, or Delete (CRUD) function in Apex code.

Issue (Code Snippet, Exploit)

Remediation Guidelines

O User permissions should always be validated before a CRUD function is executed in Apex code. This way, if the user does
not have the correct permissions for what they are trying to do, they will now be allowed to proceed.

O Implement access control checks such as isAccessible() prior to Select. isAccessible() checks to see if the user who is trying
to select something has permissions to access that information.

O Implement access control checks such as isCreateable() prior to insert. isCreateable() checks to see if the user who is trying
to insert something is allowed to insert that type of information/object.

O Implement access control checks such as isUpdateable() prior to update. isUpdateable() checks to see if the user who is
trying to update something is allowed to do so.

O Implement access control checks such as isDeleteable() prior to delete. isDeleteable() checks to see if the user who is trying
to delete something is allowed to do so.

O Code Snippet: if(Schema.sObjectType.Case.isCreateable()) {insert SecurityScanCase;}

Vulnerability Trace

UserClass PasswordManipulation (classes/PasswordManipulation.cls * Line: 1 Col: 27)

public with sharing class PasswordManipulation

Method PasswordManipulation (classes/PasswordManipulation.cls » Line: 2 Col: 12))
void PasswordManipulation()

Assignment u.profileld (classes/PasswordManipulation.cls > Line: 13 Col: 9)
u.profileld='"00e GOOO0000FgyJ'

DmlinsertStatement u (classes/PasswordManipulation.cls * Line: 14 Col: 9)

insert u

Contact

DigitSec, Inc.

214 1st Ave S. Suite BO3
Seattle, WA 98104
206-659-9521
info@digitsec.com

Confidential Information

The information contained in this document is
confidential in nature and should be handled with
due care and restricted to authorized personnel only

